Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Theor Biol ; : 111376, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2229159

ABSTRACT

SARS-CoV-2 (SARS2) regularly mutates resulting to variants of concern (VOC) which have higher virulence and transmissibility rates while concurrently evading available therapeutic strategies. This highlights the importance of amino acid mutations occurring in the SARS2 spike protein structure since it may affect virus biology. However, this was never fully elucidated. Here, network analysis was performed based on the COVID-19 genomic epidemiology network between December, 2019-July, 2021. Representative SARS2 VOC spike protein models were generated and quality checked, protein model superimposition was done, and common contact based on contact mapping was established. Throughout this study, we found that: (1) certain individual variant-specific amino acid mutations can affect the spike protein structural pattern; (2) certain individual variant-specific amino acid mutations had no affect on the spike protein structural pattern; and (3) certain combination of variant-specific amino acids are putatively epistatic mutations that can potentially influence the VOC spike protein structural pattern. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".

2.
J Mol Graph Model ; 119: 108396, 2023 03.
Article in English | MEDLINE | ID: covidwho-2159305

ABSTRACT

Autophagy is an important cellular process that triggers a coordinated action involving multiple individual proteins and protein complexes while SARS-CoV-2 (SARS2) was found to both hinder autophagy to evade host defense and utilize autophagy for viral replication. Interestingly, the possible significant stages of the autophagy biochemical network in relation to the corresponding autophagy-targeted SARS2 proteins from the different variants of concern (VOC) were never established. In this study, we performed the following: autophagy biochemical network design and centrality analyses; generated autophagy-targeted SARS2 protein models; and superimposed protein models for structural comparison. We identified 2 significant biochemical pathways (one starts from the ULK complex and the other starts from the PI3P complex) within the autophagy biochemical network. Similarly, we determined that the autophagy-targeted SARS2 proteins (Nsp15, M, ORF7a, ORF3a, and E) are structurally conserved throughout the different SARS2 VOC suggesting that the function of each protein is preserved during SARS2 evolution. Interestingly, among the autophagy-targeted SARS2 proteins, the M protein coincides with the 2 significant biochemical pathways we identified within the autophagy biochemical network. In this regard, we propose that the SARS2 M protein is the main determinant that would influence autophagy outcome in regard to SARS2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy , Virus Replication
3.
mBio ; 13(3): e0078422, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807327

ABSTRACT

The main protease, Mpro, of SARS-CoV-2 is required to cleave the viral polyprotein into precise functional units for virus replication and pathogenesis. Here, we report quantitative reporters for Mpro function in living cells in which protease inhibition by genetic or chemical methods results in robust signal readouts by fluorescence (enhanced green fluorescent protein [eGFP]) or bioluminescence (firefly luciferase). These gain-of-signal systems are scalable to high-throughput platforms for quantitative discrimination between Mpro mutants and/or inhibitor potencies as evidenced by validation of several reported inhibitors. Additional utility is shown by single Mpro amino acid variants and structural information combining to demonstrate that both inhibitor conformational dynamics and amino acid differences are able to influence inhibitor potency. We further show that a recent variant of concern (Omicron) has an unchanged response to a clinically approved drug, nirmatrelvir, whereas proteases from divergent coronavirus species show differential susceptibility. Together, we demonstrate that these gain-of-signal systems serve as robust, facile, and scalable assays for live cell quantification of Mpro inhibition, which will help expedite the development of next-generation antivirals and enable the rapid testing of emerging variants. IMPORTANCE The main protease, Mpro, of SARS-CoV-2 is an essential viral protein required for the earliest steps of infection. It is therefore an attractive target for antiviral drug development. Here, we report the development and implementation of two complementary cell-based systems for quantification of Mpro inhibition by genetic or chemical approaches. The first is fluorescence based (eGFP), and the second is luminescence based (firefly luciferase). Importantly, both systems rely upon gain-of-signal readouts such that stronger inhibitors yield higher fluorescent or luminescent signal. The high versatility and utility of these systems are demonstrated by characterizing Mpro mutants and natural variants, including Omicron, as well as a panel of existing inhibitors. These systems rapidly, safely, and sensitively identify Mpro variants with altered susceptibilities to inhibition, triage-nonspecific, or off-target molecules and validate bona fide inhibitors, with the most potent thus far being the first-in-class drug nirmatrelvir.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , Amino Acids , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Luciferases, Firefly , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
4.
Front Med (Lausanne) ; 8: 613412, 2021.
Article in English | MEDLINE | ID: covidwho-1154225

ABSTRACT

The SARS-CoV-2 (SARS2) is the cause of the coronavirus disease 2019 (COVID-19) pandemic. One unique structural feature of the SARS2 spike protein is the presence of a furin-like cleavage site (FLC) which is associated with both viral pathogenesis and host tropism. Specifically, SARS2 spike protein binds to the host ACE-2 receptor which in-turn is cleaved by furin proteases at the FLC site, suggesting that SARS2 FLC structural variations may have an impact on viral infectivity. However, this has not yet been fully elucidated. This study designed and analyzed a COVID-19 genomic epidemiology network for December 2019 to July 2020, and subsequently generated and analyzed representative SARS2 spike protein models from significant node clusters within the network. To distinguish possible structural variations, a model quality assessment was performed before further protein model analyses and superimposition of the protein models, particularly in both the receptor-binding domain (RBD) and FLC. Mutant spike models were generated with the unique 681PRRA684 amino acid sequence found within the deleted FLC. We found 9 SARS2 FLC structural patterns that could potentially correspond to nine node clusters encompassing various countries found within the COVID-19 genomic epidemiology network. Similarly, we associated this with the rapid evolution of the SARS2 genome. Furthermore, we observed that either in the presence or absence of the unique 681PRRA684 amino acid sequence no structural changes occurred within the SARS2 RBD, which we believe would mean that the SARS2 FLC has no structural influence on SARS2 RBD and may explain why host tropism was maintained.

SELECTION OF CITATIONS
SEARCH DETAIL